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A novel approach for treating vaporization of liquid droplets with large deformation and 
high mass transfer rate is developed. The formulation is based on decomposed vaporization 
mechanisms and accommodates the effects of density and property variations in both the 
gas and liquid phases. In this model, the mass and energy transfer across the interface are 
realized by a source layer in the gas phase and a sink layer in the liquid phase around 
the interface. The flow field in each phase is described by a set of unified conservation 
equations in the low Mach number limit. The equations are then solved by a modified 
projection method, in which the nonzero velocity divergence is treated as a source term in 
the pressure Poisson equation. The vaporization model is implemented in a volume-of-fluid 
(VOF) based code “Gerris” featuring adaptive mesh refinement. The vaporization of a single 
n-decane droplet in both quiescent and convective air environments of 1000 K at 1 atm 
is investigated to verify and validate the present model in terms of interface localization 
and mass conservation. The results demonstrate the accuracy and robustness of the present 
work. The vaporization of an impulsively started n-decane droplet with large deformation 
and breakup is also studied. The droplet surface dynamics are captured well, as are the 
vaporization behaviors.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In Ref. [1], we developed a new model dealing with vaporization of a liquid droplet with large deformation and high 
mass transfer rate, based on decomposed treatment of vaporization mechanisms. In this model, the vaporization-related 
variations of volume, energy, and species in the gas phase are modeled using a body-fitted source layer adjacent to the 
interface on the gas side. A corresponding body-fitted sink layer is placed next to the interface on the liquid side, to account 
for the mass, energy, and species changes in the liquid phase. The source and sink terms have a continuous distribution and 
are specified through the conservation laws. The new model allows for the separate treatment of interface localization and 
heat and mass transfer across the interface. It has been demonstrated to effectively capture the liquid-gas interface, while 
substantially reducing the error and complexity introduced by concurrent treatment of surface localization and mass/heat 
transfer, as encountered in conventional interface localization methods [1].

Most vaporization models assume constant density for both liquid and gas phases, to bypass the difficulties associated 
with the coupling of two-phase flows. For a vaporization process with high mass transfer driven by a large temperature 
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difference, however, gas-phase properties such as density, viscosity, and thermal conductivity change significantly near the 
interface, because of the variation of temperature and species concentration. When the initial liquid temperature is sig-
nificantly lower than the boiling temperature, the heating process causes non-negligible property variation and thermal 
expansion in the liquid phase, although the relative density change of the liquid is smaller than that of the gases. Therefore, 
neglecting property variation and treating the fluid as constant-density may cause considerable errors in prediction.

There are generally three different types of approaches to liquid vaporization: constant density in both phases, variable 
density in both phases, and constant density in the liquid phase but variable density in the gas phase. The first approach 
has been most broadly employed in vaporization models [1–5], as it provides the simplest way (also assuming constant 
properties in both phases) to study the problem. In the second approach, both gas and liquid phases are described by the 
conservation equations for variable-density flows, but with a different equation of state for each phase [6–11]. A major 
difficulty of such treatment lies in the disparity of the characteristic velocities of the flow field at low Mach numbers 
and the resultant numerical stiffness for time-marching iterations. To circumvent this difficulty, several techniques have 
been developed. Hsieh and Yang [12] and Meng and Yang [13], for example, developed a unified dual-time scheme with 
preconditioning to remedy eigenvalue disparity. The third type of models of liquid vaporization treats gas as compressible 
and liquid as incompressible [14]. It takes advantage of the phase decomposition techniques, such as the ghost fluid method, 
which couples the high-order scheme for the compressible flow with a standard scheme for the incompressible counterpart. 
This treatment retains the compressible nature of the gas phase and preserves numerical accuracy in each phase. Strictly 
speaking, this third class of model does not belong to the category of fully coupled treatment for two-phase flows. To this 
end, Billaud et al. [15] proposed a method based on a weak compressibility assumption in the gas phase to couple with the 
liquid phase; this model is capable of capturing the interface over a wide range of flow conditions.

In low-Mach number flows, the energy carried by acoustics is often unimportant to the overall solution, and the acoustic 
wavelength is usually much larger than the dimension of physical domain of interest. When flow motions are separated from 
acoustic waves, equations using low-Mach number approximation can be put in a form similar to that of the incompressible 
flow equations [16,17]. This motivates us to develop a unified coupling approach to accommodate the density variations in 
both gas and liquid phases.

In this paper, the vaporization model developed in Ref. [1] is extended to include the density variations in both the 
gas and liquid phases. The governing equations are numerically solved by a modified projection method [18,19], in which 
velocity divergence is treated as a source term in the pressure Poisson equation. Similarly, the effects of thermal expansion 
on temperature and species mass fractions are treated as the source terms in the energy and species equations, respectively. 
The resultant vaporization model is then incorporated into the volume-of-fluid (VOF)-based code “Gerris” [20,21]. As a 
demonstration example, the vaporization of a single n-decane droplet in both quiescent and convective air at room pressure 
is systematically investigated to examine the model accuracy and capability. Gerris is an open-source software program 
developed by Popinet [20,21] for incompressible single-phase and multi-phase fluid flows. The code employs an adaptive 
mesh projection method [22] to solve the time-dependent incompressible-flow equations, and uses the VOF approach to 
capture the gas-liquid interface in multi-phase flows. Here the flow compressibility (variable density) effect is accounted for 
by adding source terms in the governing equations to account for non-zero velocity divergence.

2. Mathematical formulation

The governing equations are based on the low Mach number approximation for compressible flows, which analytically 
filters out acoustic wave propagation while retaining compressibility effects associated with vaporization. At low Mach num-
bers, pressure can be decomposed into a thermodynamic component p0(t) that depends only on time and a perturbation 
component pg(x, t) that is on the order of magnitude of M2, also known as gauge pressure [12,13]. The corresponding 
conservation equations of mass, momentum, energy, and species take the following form:

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇pg + ∇(λ∇ · u) + ∇ · (2μD) + σκδsn (2)

∂(ρh)

∂t
+ ∇ · (ρhu) = ∇ · (k∇T ) +

∑
k

∇ · (ρhk Dk∇Yk) +
∑

k

qkṁ′′′
k (3)

∂(ρYk)

∂t
+ ∇ · (ρYku) = ∇ · (ρDk∇Yk) + ṁ′′′

k (4)

where ρ is the density, u the velocity vector, Yk the mass fraction of species k, h the enthalpy, T the temperature, and 
qk and ṁ′′′

k the enthalpy and mass production rate of species k per unit volume due to vaporization, respectively. In the 
momentum equation, the surface tension is treated as a continuous body force expressed as σκδsn, where σ is the surface 
tension of the liquid in the gas, κ the interface curvature, and δs the Dirac-delta function. The velocity divergence relates to 
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the volumetric source as

∇ · u = S v (5)

where S v is the volumetric source caused by thermal expansion and mass addition.
Substitution of the mass conservation equation (Eq. (1)) into the momentum equation (Eq. (2)) gives the non-conservative 

form of the momentum equation as

ρ
∂u

∂t
+ ρu · ∇u = −∇pg + ∇(λ∇ · u) + ∇ · (2μD) + σκδsn (6)

Considering mass conservation, the energy equation (Eq. (3)) becomes

Dh

Dt
= ∂h

∂t
+ u · ∇h = 1

ρ
∇ · (k∇T ) + 1

ρ

∑
k

∇ · (ρhk Dk∇Yk) + 1

ρ

∑
k

qkṁ′′′
k (7)

In the gas phase, the enthalpy of the gas mixture h is a function of temperature T , thermodynamic pressure p0, and species 
mass fraction Yk . The material derivative of enthalpy can be stated as

Dh

Dt
= ∂h

∂T

∣∣∣∣
p0,Yk

DT

Dt
+ ∂h

∂ p0

∣∣∣∣
T ,Yk

Dp0

Dt
+

∑
k

∂h

∂Yk

∣∣∣∣
p0,T ,Y j, j �=k

DYk

Dt
(8)

In the low Mach number limit, the thermodynamic component of pressure p0 is constant. Substituting Dp0/Dt = 0 into 
Eq. (8), we have

Dh

Dt
= ∂h

∂T

∣∣∣∣
p0,Yk

DT

Dt
+

∑
k

∂h

∂Yk

∣∣∣∣
p0,T ,Y j, j �=k

DYk

Dt

= 1

ρ
∇ · (k∇T ) + 1

ρ

∑
k

∇ · (ρhk Dk∇Yk) − 1

ρ

∑
k

qkṁ′′′
k (9)

This equation can be rearranged as

cp
DT

Dt
= 1

ρ
∇ · (k∇T ) + 1

ρ

∑
k

∇ · (ρhk Dk∇Yk) − 1

ρ

∑
k

(qk + ξk)ṁ
′′′
k (10)

where

cp = ∂h

∂T

∣∣∣∣
p0,Yk

, ξk ≡ ∂h

∂Yk

∣∣∣∣
p0,T ,Y j, j �=k

and
DYk

Dt
= 1

ρ
ṁ′′′

k (11)

For cases with mass transfer at the two-phase interface, the mass production rate is non-zero only in the source layer. Thus, 
ξk = 0 and Eq. (10) becomes

∂T

∂t
+ ∇ · (T u) = T ∇ · u + 1

ρcp
∇ · (k∇T ) + 1

ρcp

∑
k

∇ · (ρhk Dk∇Yk) − 1

cp

∑
k

qkṁ′′′
k (12)

With the modeled volumetric source ∇ · u = S v and mass production rate ṁ′′′
k , the energy equation can be solved with an 

explicit scheme. Substitution of Eq. (1) into (4) gives the species equation as follows:

∂Yk

∂t
+ ∇ · (Yku) = Yk∇ · u + 1

ρ
∇ · (ρDm∇Yk) + 1

ρ
ṁ′′′

k (13)

This equation has a form similar to the energy equation (Eq. (12)) and can be solved by the same method.
The velocity divergence ∇ · u due to thermal expansion in the gas phase can be obtained from the equation of state, in 

which the pressure p0 is expressed as a function of density ρ , temperature T , and species mass fraction Yk [12]. Taking the 
material derivative of the equation of state, we obtain

Dp0

Dt
= ∂ p0

∂ρ

Dρ

Dt
+ ∂ p0

∂T

DT

Dt
+

∑
k

∂ p0

∂Yk

DYk

Dt
= 0 (14)

Combination of this equation with the mass conservation equation, Eq. (1), gives rise to

∇ · u =
(
ρ

∂ p0

∂ρ

)−1(
∂ p0

∂T

DT

Dt
+

∑ ∂ p0

∂Yk

DYk

Dt

)
(15)
k
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For flows without chemical reactions, the velocity divergence reduces to

∇ · u =
(
ρ

∂ p0

∂ρ

)−1(
∂ p0

∂T

1

ρcp
∇ · (k∇T ) +

∑
k

∂ p0

∂Yk

1

ρ
∇ · (ρDm∇Yk)

)
(16)

With the ideal gas assumption, the equation of state can be written as:

p0 = ρRu T

M
= ρRu T∑

k Xk Mk
(17)

where Ru is the universal gas constant, Xk the mole fraction of species k, Mk the molecular weight of species k, and M the 
molar averaged molecular weight. Substitution of Eq. (17) into Eq. (16) yields

∇ · u = (ρcp T )−1∇ · (k∇T ) (18)

Equation (18) relates the velocity divergence to the spatial temperature distribution in the gas phase and is treated as the 
volume source in the momentum, energy, and species equations.

For the liquid phase, we assume that the density ρ is solely determined by temperature T . The velocity divergence ∇ · u
due to thermal expansion is written as

∇ · u = − 1

ρ

Dρ(T )

Dt
= − 1

ρ

Dρ

DT

DT

Dt
(19)

The material derivative of temperature in the liquid phase can be acquired from the general form of the temperature 
derivative (Eq. (10)) with Yk = 1 and m′′′

k = 0,

DT

Dt
= 1

ρcp
∇ · (k∇T ) (20)

Substitution of Eq. (20) into Eq. (19) gives the velocity divergence due to thermal expansion in the liquid phase,

∇ · u = − 1

ρ2cp

Dρ

DT
∇ · (k∇T ) (21)

In the present work, the VOF approach is used to capture the time-evolving two-phase interface. The transport equation 
for volume fraction reads

∂ F

∂t
+ u · ∇ F = 0 (22)

where F is the liquid volume fraction in grid cells. F = 1 in the liquid phase and F = 0 in the gas phase.
Equations (5), (6), (12), (13), (18), (21), (22) constitute the system of governing equations for two-phase flows with mass 

and energy transfer in the low-Mach limit. The formulation, however, remains unclosed, because of the lack of a vaporization 
model for the two-phase interface, which will be discussed in the following section.

3. Heat and mass transfer at the interface

At the interface, we employ the heat and mass transfer model based on the decomposed mechanisms proposed by 
Wang and Yang [1], which has demonstrated great accuracy and efficiency in dealing with liquid vaporization with large 
deformation. In this model, as shown in Fig. 1, the mass transfer and consequent change of normal velocity at the interface 
is expanded over a banded region of finite thickness across the interface. The banded region includes a source layer with 
positive mass production rate ṁ′′′ on the gas side to model the increments of volume, mass, and energy due to vaporization, 
and a sink layer with negative mass production rate ṁ′′′ on the liquid side to model the loss of volume, mass and energy. 
The corresponding thicknesses are denoted by δsource and δsink , respectively. Each layer covers an appropriate number of grid 
cells. The distances of the central surfaces of the source and sink layers from the interface are denoted by dsource and dsink , 
respectively. The numerical grids near the interface are sufficiently dense to resolve both the source and sink layers as well 
as the region between the two layers. The velocity divergence in the gas and liquid phases due to mass transfer is described 
by

∇ · u = ṁ′′′

ρ
(23)

The negative mass production rate (ṁ′′′
sink < 0) in the sink layer creates an additional normal velocity toward the liquid phase 

for fluid outside the sink layer. It pulls the two-phase interface to the liquid phase to model the interfacial regression. In the 
meantime, the positive mass production rate (ṁ′′′

source > 0) in the source layer causes an increase in normal velocity in the 
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Fig. 1. Vaporization model based on decomposed mechanisms [1].

gas phase to account for the Stefan flow that takes place in the course of vaporization. The mass conservation in the liquid 
phase ensures that the interfacial regression is consistent with the mass transfer rate due to vaporization. In the region 
between the source and sink layers, the velocity varies continuously across the interface, and this guarantees the accuracy 
of interface localization with any well-developed method for two-phase flows without mass transfer.

The continuous mass production in the source and sink layers relates to the mass vaporization rate as,

∫
δsource

ṁ′′′
sourcedx = −

∫
δsink

ṁ′′′
sinkdx = ṁ′′, (24)

where x is the coordinate normal to the interface with the origin at the center of each layer. ṁ′′ is the surface vaporization 
rate in mass determined by the net heat flux to the interface,

ṁ′′ = 1

	h f g

(
kgas

∂T

∂n

∣∣∣∣
s,g

− kliquid
∂T

∂n

∣∣∣∣
s,l

)
(25)

where 	h f g is the enthalpy of vaporization. A sinusoidal profile is adopted to describe the mass production rate in the 
source and sink layers,

⎧⎪⎪⎨
⎪⎪⎩

ṁ′′′
source = ṁ′′

δsource
(1 + cos(2πx/δsource))

ṁ′′′
sink = − ṁ′′

δsink
(1 + cos(2πx/δsink))

(26)

As a consequence of the interface curvature as well as the deviation of the source and sink layers from the interface, the 
areas of the central surfaces of the source and sink layers are different from that of the interface. This causes errors in the 
numerical calculation of the mass transfer rate. Here we introduce two correction factors for the mass production rates in 
the source and sink layers to compensate for the area change of the two layers,

ṁ′′
source ≡ αsourceṁ′′ and ṁ′′

sink ≡ αsinkṁ′′ (27)

and

αsource = 	Sinterface

	Ssource
= R2

curv

(Rcurv + dsource)2

αsink = 	Sinterface

	Ssink
= R2

curv

(Rcurv − dsink)
2
, (28)

where dsource and dsink are the distances of the center surfaces of the source and sink layers from the interface, respectively, 
and Rcurv the radius of the interface curvature.

The energy equation (Eq. (3)) and the species mass fraction equation (Eq. (4)) are coupled through the surface vaporiza-
tion equation (Eq. (25)). The surface temperature Ts is also affected by the vapor pressure at the interface according to the 
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Clausius-Clapeyron equation,

ln
pvapor,s

p
= 	h f g Mvapor

Ru

(
1

Tboil
− 1

Ts

)
(29)

where pvapor,s is the partial pressure of vapor at the interface, p the total pressure, Mvapor the molecular weight of the vapor 
species, and Ru the universal gas constant. This condition makes the interface temperature Ts slightly below the boiling 
temperature Tboil , a situation commonly known as the pseudo wet-bulb state [23]. The vapor partial pressure pvapor,s is 
related to the vapor mole fraction Xvapor,s as Xvapor,s = pvapor,s/p. Substitution of this expression into the Clausius-Clapeyron 
equation (Eq. (29)) provides another link between the energy and species balances,

ln Xvapor,s = 	h f g Mvapor

Ru

(
1

Tboil
− 1

Ts

)
(30)

Physically, the vapor mole fraction at the two-phase interface Xvapor,s depends on the surface vaporization rate ṁ′′ and the 
species transport described by Eq. (4). At the same time, Xvapor,s couples with Ts through the Clausius-Clapeyron equation. 
The energy equation (Eq. (3)) and the mass-fraction equation (Eq. (4)), as well as the links between them, that is, the 
surface vaporization equation (Eq. (25)) and the Clausius-Clapeyron equation (Eq. (29)), constitute the formulation of liquid 
vaporization.

4. Numerical method

The present work incorporates the vaporization model into the well-developed VOF-based code Gerris, which was ini-
tially developed for multiphase incompressible flows. In Gerris, the governing equations are solved by the numerical method 
proposed by Popinet [20,21], which combines quad/octree discretization, a time-staggered projection method, and a mul-
tilevel Poisson solver. We extend the application range of Gerris to situations with density variations in both the gas and 
liquid phases. The non-zero velocity divergence is taken into account by adding a source term to the right-hand-side of 
the Poisson equation. All the effects related to the volume dilatation and fluid property variations are treated as the source 
terms in the transport equations. The liquid density is determined solely by the local temperature, while the gas density 
depends on the species composition and temperature, as follows.

ρ =
{

ρliquid(T ), liquid phase
p0

∑
k Mk/Ru T , gas phase

(31)

The time-staggered projection method is used to solve the flow equations,

ρn+1/2u∗ − 	t∇ · (μn+1/2D∗)
= 	t∇ · (μn+1/2Dn) + 	t(σκδsn)n+1/2 + ρn+1/2un − 	tρn+1/2un+1/2 · ∇un+1/2 (32)

∇ ·
(

	t

ρn+1/2
∇pn+1/2

)
= ∇ · u∗ − Sn+1/2

v (33)

un+1 = u∗ − 	t

ρn+1/2
∇pn+1/2

g (34)

The volume source Sn+1
v results from the divergence of un+1. It is determined by Eq. (18) in the gas phase and Eq. (21) in 

the liquid phase, respectively, and Eq. (23) in the source and sink layers.
The transport equations for temperature and mass fraction are discretized by an explicit scheme at each time level.

T n+1/2 = T n−1/2 − 	t∇ · (T nun) + 	tT n∇ · un + 	t

ρncn
p
∇ · (kn∇T n)

+ 	t

ρncn
p

∑
k

∇ · (ρnhn
k Dn

k∇Y n
k

) − 	t

cn
p

∑
k

qkṁ′′′
k (35)

Y n+1/2
vapor = Y n−1/2

vapor − 	t∇ · (Y n
vaporun) + 	tY n

vapor∇ · un + 	t

ρn
∇ · (ρn Dn

m∇Y n
vapor

) + 	t

ρn
ṁ′′′

vapor (36)

The transport equation for volume of fluid is also discretized by an explicit scheme.

F n+1/2 = F n−1/2 − 	tun · ∇ F n (37)

The spatial discretization of Eqs. (32)–(37) is realized through a graded quadtree partitioning. The details are given in 
Refs. [20,21].



Y. Wang et al. / Journal of Computational Physics 394 (2019) 1–17 7
Table 1
Properties of n-decane and air at 1 atm.

ρ (kg/m3) υ (m2/s) k (kJ/s m k) cp (kJ/kg K)

liquid n-decane at 447 K 604.14 3.35 × 10−7 9.49 × 10−5 2.81
vapor n-decane at 447 K 4.13 1.86 × 10−6 2.14 × 10−5 2.35
vapor n-decane at 1000 K 1.80 9.72 × 10−6 8.10 × 10−5 3.74
air at 447 K 0.789 3.17 × 10−5 3.66 × 10−5 1.02
air at 1000 K 0.353 1.23 × 10−4 6.77 × 10−5 1.14

The volume-based thermal properties of the gas mixture are estimated by the molar-weighted average of the properties 
of each individual species as

Amix =
∑

k

Xk Ak (38)

The mass-based thermal properties of the mixture, such as the specific heat capacity, are estimated by the mass-weighted 
average of the properties of each individual species,

Bmix =
∑

k

Yk Bk (39)

5. Model verification and validation

Considerable verification and validation has been performed on the Gerris code for flows without mass transfer. The code 
has demonstrated its capability, robustness, and accuracy in dealing with multiphase flows with strong liquid deformation 
[24–26]. In the present work, the model verification and validation is focused on flows with large liquid/gas density ratios 
and high vaporization rates combined with strong liquid deformation. The major challenges of this kind of flow simulation 
result from the low interface regression rate compared with the high velocity jump across the interface, and the strong 
coupling of thermal and mass transfer near the interface. In this section, several test cases are considered to demonstrate 
the efficient implementation and reliable solution of the present approach.

The experiment of Wong and Lin [27] provides temporally-resolved measurements of the size and temperature of an 
n-decane droplet in air, allowing for direct validation of the present model under high vaporization conditions. In their 
experiment, a spherical droplet with an initial diameter D0 = 1.98 mm and initial temperature Td,0 = 315 K was suspended 
in a hot air flow with Tair = 1000 K and Uair = 1 m/s at one atmosphere. The corresponding boiling temperature of n-decane 
is 447 K. Table 1 lists the properties of n-decane and air at various temperatures.

The binary diffusion coefficient of n-decane vapor in air is given as follows [28]

Dm = 3

16

(4πkB T /M w AB)1/2

(p/Ru T )πσ 2
ABΩD

f D ∝ T 3/2

p
(40)

We obtain Dm = 2.2 × 10−5 m2/s at 1 atm and 273 K. In general, Dm can be estimated by the following equation.

Dm = 2.2 × 10−5 ×
(

T

273

)3/2

×
(

1

p

)
(41)

where the unit of p is atm. The surface tension of liquid n-decane is a function of temperature [29]

σ = 0.112 ×
(

1 − T

647.3

)0.71

kg/s2 (42)

Under the conditions considered in this study, the droplet remains axisymmetric about the centerline. The conser-
vation equations of mass, momentum, energy and species in the axisymmetric form are thus solved on the meridian 
plane. In the simulation, the thickness of the source and sink layers is taken to be δsource = δsink = 1/35Rd,0, and the 
distance of the layers from the interface is dsource = dsink = 1/20Rd,0, where Rd,0 is the initial droplet radius. Technically, 
the smaller the layer thickness δsource & sink and the smaller the layer distance dsource & sink , the closer the model is to 
the real mechanisms. We compared the temperature gradients at the interface between two separate simulations with 
δsource & sink = 1/35Rd,0, dsource & sink = 1/20Rd,0 and δsource & sink = 1/18Rd,0, dsource & sink = 1/10Rd,0. The relative difference 
is less than 3%. The selection of δsource & sink and dsource & sink is primarily determined by the accuracy requirement of the 
specific work.
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Fig. 2. Effect of grid resolution on streamwise velocity and temperature for vaporization of suspended n-decane droplet in uniform airflow at t = 2 s (a) 
fine grid with 	min = 0.01R0; (b) coarse grid with 	min = 0.02R0; (c) streamwise velocity and (d) temperature on cross section through droplet center.

5.1. Grid independence study

An adaptive mesh refinement algorithm is used to dynamically resolve the flow characteristics according to the spatial 
gradients of temperature and vapor mass fraction. To examine the grid sensitivity of the numerical result, simulations were 
conducted with two different sets of grids: a fine grid with 	min = 0.01Rd,0 and a coarse grid with 	min = 0.02Rd,0, where 
	min is the minimum grid size and Rd,0 is the initial droplet radius. The total numbers of node points for the coarse and 
fine grids are roughly 5000 and 11000, respectively. Fig. 2 shows a comparison of the results and the corresponding dis-
tributions of streamwise velocity and temperature at t = 2 s. At each level of controlling variables, that is, spatial gradients 
of temperature and vapor mass fraction, the size of the coarse grid is twice that of the fine grid. Figs. 2(c) and 2(d) show 
the distributions on the cross section through the droplet center. Excellent convergence from the coarse to the fine grids is 
obtained. Nevertheless, the fine grid is used for all cases in the present study to ensure the numerical accuracy. Detailed 
flow and temperature structures will be discussed in Section 5.4.

5.2. Thermal expansion of quiescent n-decane droplet with constant surface temperature

Thermal expansion of the liquid phase caused by density variation is considered. To verify the model, we examine the 
mass variation of a quiescent n-decane droplet heated with constant surface temperature Ts = Tboil = 447 K. The initial 
droplet temperature is Td,0 = 315 K, and the droplet diameter is D0 = 1.98 mm. For testing purposes, mass transfer across 
the droplet surface is not treated. The liquid density is taken to be a linear function of temperature.

ρ = a + bT (43)

For liquid n-decane, ρ = 713.43 kg/m3 at T = 315 K and ρ = 604.14 kg/m3 at T = 447 K, giving a = 974.26 kg/m3, b =
−0.828 kg/(m3 K). The velocity divergence in the liquid phase can be acquired by substituting Eq. (43) into Eq. (21).

In the heating process, the droplet size increases as the density decreases, yet the droplet mass remains constant. Fig. 3(a) 
shows the temporal evolution of the temperature profile in the droplet. The ratios of the droplet mass and volume to 
their initial values are presented in Fig. 3(b). The mass ratio md/md,0 remains at unity throughout the heating period. The 
volume ratio Vd/Vd,0 increases from unity at t = 0 s and asymptotically approaches the analytical value of Vd/Vd,0 = 1.18
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Fig. 3. Temporal evolution of (a) temperature distribution and (b) relative mass and volume of an n-decane droplet without vaporization. Td,0 = 315 K, 
Ts = 447 K, D0 = 1.98 mm.

Fig. 4. Radial distribution of density ratio.

at Td = 447 K. This validation case ensures accurate treatment of volume variation and guarantees mass conservation in the 
heating process.

5.3. Vaporization of n-decane droplet in quiescent air

As part of the model validation, we examine the vaporization of a single n-decane droplet in quiescent air and validate 
the present model against the classical D2 law [28]. With the assumption of uniform properties and quasi-steady-state 
conditions, the conservation equations of mass and energy can be solved analytically [28], giving the evolution of the 
droplet diameter in the following form,

D2 = D2
0 − Kt (44)

where the constant K can be determined by the fluid properties estimated at the reference temperature and mass fraction.
Fig. 4 shows the calculated density field in the gas phase. Roughly 13000 numerical grids are used on the meridian 

plane. The gas density decreases from (ρ/ρvapor,boil)s = 0.58 at the droplet surface to 0.11 in the far field. Fig. 5 shows the 
temporal evolution of the square of the droplet diameter predicted by the numerical and analytical methods. Two different 
methods were used to calculate the droplet diameter in the numerical simulation. The first is based on the volume of the 
liquid phase, and the second involves the subtraction of the liquid volume of the evaporated liquid in the gas phase from 
the initial liquid volume. The comparison allows for examination of the consistency between the mass of the evaporated 
liquid and that of the lost liquid. The mass of the evaporated liquid is calculated by

mvapor =
∫

V gas

ρgasYvapordV gas (45)

For variable-density flows with sharp changes of temperature and species concentration across the interface, it is a challenge 
to accurately estimate the fuel vapor mass. The numerically predicted diameter square D2 estimated with the two methods 
agrees fairly well with the analytical result. In the early stage (t < 0.5 s), the slopes of the numerical results are slightly 
larger than that of the analytical prediction. This is caused by the use of Yvapor = 0 and Tgas = 1000 K as the initial condition 
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Fig. 5. Temporal evolution of square of n-decane droplet diameter in quiescent air (Tair = 1000 K).

Fig. 6. Numerical and analytical results at t = 1 s for n-decane droplet vaporization in quiescent air: (a) distribution of radial velocity; (b) distributions of 
temperature and vapor mass fraction.

in the numerical simulation. The temperature and species fields undergo an initial transient process. The analytical solution, 
however, assumes that the temperature and species concentrations obey the quasi-steady distribution. In the fully developed 
stage (t > 0.5 s), the slopes of the numerical results are smaller than their analytical counterpart. Deviation primarily results 
from the constant-density assumption in the analytical model. The figure also shows that the numerically predicted D2 of 
the two methods agree well in terms of droplet regression rate, (dD2/dt) except in the initial range (t < 1 s), in which 
Method 2 slightly under-estimates the prediction by Method 1. This is attributed to the establishment of vapor concentration 
in the source layer in the initial period.

Fig. 6 shows the distributions of radial velocity, temperature, and mass fraction in the gas phase at t = 1 s. The con-
tinuous vaporization creates a Stefan flow in the gas phase; the velocity of the Stefan flow obeys mass conservation in 
the spherical coordinate system. As shown in Fig. 6(a), the calculated radial velocity is smaller than the analytical predic-
tion near the interface. The difference is caused by the constant-density assumption applied by the analytical solution. The 
gas density near the interface is under-estimated by the analytical solution, rendering a larger radial velocity as compared 
with the numerical solution. Fig. 6(b) shows the normalized temperature and fuel vapor mass fraction in the gas phase. 
At the droplet surface, the numerically predicted temperature is (Ts/Tboil)num = 0.936, which is slightly (0.11%) higher than 
the analytical value of (Ts/Tboil)anal = 0.935. The numerically predicted fuel vapor mass fraction at the droplet surface is 
(Yvapor)num = 0.821, which is higher than the analytical prediction of (Yvapor)anal = 0.820 by 0.12%. Both the temperature 
and vapor mass fraction of the numerical solution indicate noticeable deviation from the analytical prediction. Two reasons 
contribute to this phenomenon. First, the analytical model employs a quasi-steady assumption, for which the time scale 
for interface regression is much larger than for heat and mass transfer, a situation not well satisfied in the present study. 
Second, the analytical analysis ignores density variations in the gas and liquid phases.

5.4. Vaporization of n-decane droplet in uniform air flow

For a droplet vaporizing in a convective environment, the ambient gas flow interacts with the droplet and creates a 
boundary layer on the droplet surface. The heat and mass transfer between the liquid and gas phases are thus enhanced. 
Here the vaporization of an n-decane droplet in a hot, uniform air flow at 1 atm is treated, simulating the experiment of 
Wong and Lin [27]. The air flow velocity is Ugas = 1 m/s. The Reynolds number based on the initial droplet diameter and 
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Fig. 7. Flow pattern of n-decane droplet suspended in uniform air flow at t = 2 s, Uair = 1 m/s and Tair = 1000 K.

Fig. 8. Temporal variation of temperature inside n-decane droplet suspended in uniform air flow at Uair = 1 m/s and Tair = 1000 K.

air velocity is Red = Ugas D0/ῡgas = 42.9, where ῡgas is the kinematic viscosity of the gas estimated with the 1/3 rule. The 
droplet basically remains spherical throughout its lifetime. In the simulation, the total number of numerical grids is roughly 
11000 on the meridian plane.

Fig. 7 shows the flow pattern at t = 2 s. The droplet interior is characterized by an axisymmetric recirculating flow, 
which transfers heat from the droplet surface to the interior. Outside of the droplet, the Stefan flow created by the evapo-
rated liquid forms an envelope around the droplet and separates the outer airflow from the droplet. The interface between 
the outer airflow and the inner Stefan flow provides space for chemical reactions in cases with liquid fuel combustion. 
As shown in the figure, an axisymmetric vortex bubble is generated in the wake of the droplet. The bubble does not ap-
pear in the flow predicted by the constant-density model under the same condition [1]. This difference is caused by the 
fact that the constant-density model underestimates the gas density near the interface, as shown in Fig. 4. It leads to a 
nonphysically higher vapor velocity and suppresses the vortex bubble in the wake of the droplet. The constant-density 
model fails to capture some salient flow characteristics related to the density variation and thermal expansion in the gas 
phase.

The droplet, which is initially at a low temperature, is first heated by the ambient hot air. At this stage, the heat from 
the hot air is mostly transferred to the droplet interior, and the interface temperature Ts and the vaporization rate ṁ′′ are 
relatively low. Fig. 8 shows the temperature evolution in the droplet from t = 0.5 to 2.0 s. A small fraction of the heat 
transferred to the droplet goes to evaporate liquid to vapor, and the remainder is absorbed by the droplet and increases its 
interior temperature. The recirculating flow within the droplet acquires heat from the interface through diffusion, and then 
advects the heat to the interior.

As the droplet temperature increases, the heat transfer to the droplet interior is reduced, and the vaporization rate ṁ′′
increases. Fig. 9 shows snapshots of the temperature T , vapor mass fraction Yvapor and density ratio ρ/ρvapor,boil fields at 
t = 2 s. The thermal and species boundary layers in which temperature and vapor mass fraction changes considerably are 
clearly identified. The region with lower temperature and higher vapor concentration extends downstream of the droplet due 
to the convection effect. Compared with the constant-density model [1], the droplet wake region with lower temperature 
and higher vapor mass fraction becomes wider because of the formation of the wake bubble. The gas density also varies 
around the droplet.
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Fig. 9. Distributions of (a) temperature T , (b) vapor mass fraction Yvap and (c) density ratio ρ/ρvap,boil , n-decane droplet suspended in uniform air flow at 
Uair = 1 m/s and Tair = 1000 K, t = 2 s.

Fig. 10. Temporal variations of (a) temperature at droplet center Tc, and (b) diameter D/D0 for n-decane droplet suspended in uniform air flow, Uair =
1 m/s and Tair = 1000 K.

Fig. 10 compares the numerical prediction with the experimental measurement of Wong and Lin [27] in terms of the 
temporal variation of the droplet temperature and diameter. To distinguish the variable-density effects in the gas and liquid 
phases, we also include the two additional cases with (a) constant liquid density and variable gas density, and (b) constant 
liquid density and constant gas density [1]. The overall process can be divided into the droplet heating and vaporization 
stages. In the early period, the heat transferred to the droplet is mostly absorbed by the droplet, increasing the droplet 
temperature, and the vaporization rate is low. As the droplet heats up, the vaporization rate increases. Once the droplet sur-
face temperature reaches its pseudo wet-bulb state, further heating is primarily consumed for phase change, and significant 
vaporization takes place.

Fig. 10(a) shows the temperature evolution at the droplet center, Tc . All the numerical predictions agree well with 
experimental data in the initial heating stage (t < 1.7 s). This is primarily because of the weak dependence of isobaric 
heat capacity (cp ) of liquid n-decane on temperature. When t > 1.7 s, the droplet temperature asymptotically approaches 
a constant value, and intense vaporization takes place. The final droplet temperatures predicted by the numerical models 
are lower than that of the experimental measurement. The relative error δerror,T ≡ |Td,num − Td,exp|/Td,exp of the numerical 
result in the variable gas-density case (with both constant and variable liquid density) is 3.44%. Such difference may be 
attributed to measurement uncertainty and/or the representation of the gas-liquid interface by finite-thickness source and 
sink layers. The latter can be improved by increasing the grid resolution and decreasing the thickness of the source/sink 
layers near the droplet surface.
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Fig. 11. Temporal evolution of vapor mass fraction for an impulsively started n-decane droplet in quiescent air, U0 = 2 m/s.

Fig. 10(b) shows the temporal evolution of the droplet diameter. The result predicted by the present variable-density 
model agrees well with the experimental measurement over the entire lifetime of the droplet. The constant liquid-density 
assumption in the model, on the other hand, leads to premature droplet regression. The constant gas-density assumption 
further makes the droplet size reduction take place earlier. In the vaporization stage, the rate of droplet size reduction, 
d(D/D0)/dt , measured by the curve slopes in the figure, are well predicted by the numerical models with either the constant 
or variable density treatment.

5.5. Vaporization of impulsively started n-decane droplet in quiescent air at 1 atm

In order to demonstrate the robustness of the present model, we study the vaporization of an impulsively started droplet 
in quiescent air. With the increase in the droplet initial velocity, the aerodynamic force exerted on the droplet gradually be-
comes stronger, leading to greater droplet deformation. When the velocity is large enough, droplet breakup takes place. Two 
non-dimensional parameters, the Weber and the Ohnesorge numbers, defined as We = ρgasU 2

0 D0/σ and Oh = μl/
√

ρl D0σ , 
respectively, are identified to characterize droplet deformation and breakup. Here σ is the surface tension. General discus-
sions of this subject can be found in Refs. [30,31].

At t = 0 s, an n-decane droplet with an initial diameter D0 = 1.98 mm is placed in quiescent air with Tair = 1000 K. To 
focus on the vaporization of a deformed droplet, we ignore the heat transfer inside the droplet and assume that the droplet 
has been preheated to its final pseudo wet-bulb state when it starts to move. As a consequence of the interaction with 
the surrounding air, the droplet decelerates, deforms, and evaporates as it moves. The simulation covers a spatial domain 
of 0.2 m, about 100 times the droplet diameter. Two different initial droplet velocities U0 = 1 and 2 m/s are considered. 
In the simulation with the constant-density model [1], modest deformation of the droplet occurs at U0 = 2 m/s. In the 
present study with the variable-density model, the gas density near the droplet surface is relatively higher, facilitating 
droplet deformation through stronger aerodynamic force.

Fig. 11 shows the temporal evolution of droplet deformation and fuel vapor mass fraction for U0 = 2 m/s. A total of 
20000 numerical grids are used on the meridian plane in the calculation. The corresponding Weber number and Ohnesorge 
number are We = 3.35 and Oh = 1.89 × 10−3, respectively. According to the regime diagram of Hsiang and Faeth [30], 
droplet deformation in this case is subject to periodic oscillation, and this is consistent with the observation made in the 
present study.

Fig. 12 shows the temporal evolution of droplet position and diameter predicted by the constant-density and variable-
density models. Here D is the equivalent diameter of a spherical droplet with the same volume. For the cases with the 
variable-density model, the droplet is surrounded by hot air with density relatively smaller than that of the constant-
density model [1] in the far field, so the droplet velocity predicted by the variable-density model is slightly higher than 
that of the constant-density model for U0 = 1 m/s. For U0 = 2 m/s, the droplet deformation takes place when the variable-
density model is employed. The drag force on the droplet becomes greater, making the droplet velocity smaller than that 
predicted by the constant-density model. The temporal variation of the droplet diameter shown in Fig. 12(b) indicates that 
the rate of diameter reduction, d(D/D0)/dt , increases with increasing droplet velocity U0. At U0 = 0, the constant- and 
variable-density models provide almost the same result. At U0 > 0, the difference between the two models arises. The rate 
of diameter reduction predicted by the variable-density model is smaller than its constant-density counterpart, and the 
difference increases with increasing droplet velocity. One factor contributing to this phenomenon is the uniform-property 
assumption utilized by the constant-density model. No experimental or numerical studies of vaporization of the deforming 
droplet are available in the literature for comparison. The results of the present study quantitatively demonstrate the ex-
pected trend in the rate of droplet size reduction. The model can be effectively used to study two-phase flows with large 
deformation and high mass transfer rate.
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Fig. 12. Temporal evolution of droplet (a) position and (b) diameter for an impulsively started n-decane droplet in quiescent air at different initial velocities. 
Solid: present variable-density model; dashed: constant density model of Wang and Yang [1].

Fig. 13. Temporal evolution of liquid and fuel vapor mass, as well as their sum at U0 = 2 m/s.

The conservation of liquid and vapor mass is closely examined over the droplet lifetime. Fig. 13 shows the temporal 
evolution of the liquid and vapor mass, as well as their sum at U0 = 2 m/s. Here md and mvap are the time-evolving droplet 
and fuel vapor mass, respectively, and md,0 the initial droplet mass. For an ideal case with perfect mass conservation, 
(md + mvap)/md,0 remains unity. As shown in the figure, the normalized vapor mass mvap/md,0 increases from zero when 
the droplet starts to move. Correspondingly, the normalized droplet mass md/md,0 decreases from unity. The total fuel mass 
(md + mvap)/md,0 basically remains around unity. The relative error |md,0 − (md + mvap)|/mvap is smaller than 0.05. The 
accuracy of the present vaporization model is validated in terms of mass conservation.

5.6. Vaporization of an impulsively started n-decane droplet at 10 atm

The vaporization of an impulsively started n-decane droplet in quiescent air at 10 atm is also studied to explore the effect 
of pressure on droplet behaviors. The initial droplet diameter is D0 = 0.1 mm, and the starting velocity is U0 = 10 m/s. The 
ambient air temperature is 1000 K. The heat transfer inside the droplet is ignored. Under this condition, the density ratio 
of liquid to gas is ρliquid/ρgas = 52.65, much larger than at 1 atm. The aerodynamic force on the droplet is so strong 
that large deformation of the droplet occurs. The Reynolds number is Red = 170.18. The Weber number and Ohnesorge 
number are We = 18.12 and Oh = 5.68 × 10−3, respectively. The total number of numerical grids is roughly 20000 on 
the meridian plane. The droplet experiences the bag breakup mode under these conditions [30,31]. Fig. 14 shows the 
temporal evolution of the droplet deformation and the vapor mass-fraction field. A close-up view is given in Fig. 15. The 
solid line depicts the droplet surface. The deformation pattern observed resembles that seen by Han and Tryggvason [32]
in similar parameter ranges. Liquid fuel evaporates from the droplet surface and forms a vortex ring in the wake of the 
droplet.

6. Conclusions

A novel vaporization model for liquids with large deformation and high mass transfer rate is developed. The formulation 
accommodates density and property variations in the flow field. The interfacial mass and heat transfer is treated by means 
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Fig. 14. Temporal evolution of vapor mass fraction for an impulsively started n-decane droplet in quiescent air, D0 = 0.1 mm, Pair = 10 atm, U0 = 10 m/s.

of two body-fitted source and sink layers with finite thickness in the gas and liquid phases, respectively, around the droplet 
surface. The approach can be effectively implemented in any well-developed interface localization method and circumvents 
the modeling and numerical difficulties caused by the combined treatment of mass/heat transfer and surface localization. 
The coupling of fully compressible gas phase and slightly compressible liquid phase is realized through a set of unified 
conservation equations in the low Mach number limit. The nonzero velocity divergence is treated as a source term in the 
conservation equations, and then solved by a modified projection method.

The vaporization model is not specific to the details of interface localization methods and can be incorporated into any 
of them. In this present study, it was implemented into the volume-of-fluid (VOF) based code Gerris, which was originally 
intended for flows with constant density and properties. As a model validation effort, a series of numerical simulations were 
conducted to study the vaporization of deforming droplets under various conditions. The model accuracy and robustness 
were carefully examined.
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Fig. 15. Temporal evolution of vapor mass fraction for an impulsively started n-decane droplet in quiescent air, D0 = 0.1 mm, Pair = 10 atm, U0 = 10 m/s.
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